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INTRODUCTION

This paper gives an account of some old and new results on the topic of
best approximation by polynomials and related functions. The starting point
is the following theorem, discovered simultaneously by Favard [5] and Achieser
and Krein [1], which improves part of the famous 1911 theorem ofD. Jackson.

THEOREM 1.1. Let Wn * consist of all functions f on [-7T, 7T] for which
f, j',...,j(Il-ll are continuous and 27T-periodic and I j<n-l)(x) - j<n-l)( y)1 ~
I x - y ifor all x, y E [-7T, 7T]. Let Tm be the linear span of{ I, cos x, ... , cos mx,
sin x, ... , sin mx} and set

13nm = sup inf i!f - s iI L ",<_". ".j •
fElVn* SETm •

Then 13m" = Kn(m + 1)-n where

Kn = (4/7T) I (-I)i<n+l) (2j + 1)-n-l.
i~O

(0.1)

(0.2)

Furthermore, there is a solutionfo of(O.I) such thatf~n)(x) = sign(cos(m + 1) x)
if n is even, f~n)(x) = sign(sin(m + 1) x) if n is odd. Ifgo is any other solution
to (0.1) then go(x) = Vo(x - xo) + c where ,\ = ± 1, XoE [-7T, 7T], and c is
a constant.

In Section 1 we give a proof of Theorem 1.1 which presents some new
features. In Section 2 we investigate the analogous problem for approxima­
tion by algebraic polynomials of degree m on [-I, I] where the periodicity
requirement onfin the definition of Wn * is dropped. Theorem 2.1 states that
any solution.fa has the property that f~n) assumes only the values I and -1
and has exactly m - n + I sign changes in (-I, I); that is, fo is a perfect
spline with exactly m - n + I knots. When m = n - I, the lowest value of
m for which the problem makes any sense, the solution Io is a multiple of the
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Chebyshev polynomial of degree 11. We then shmy in Theorem -=.-= that
Theorem 1.1 can be combined with a result about entire functions of C\ponen­
tial type to give a simple proof of a theorem ofS. N. Bernstein on the a,ymp­
totic behavior as m+ CJJ of the best constant. In Section .\ II C apply
Theorems 1.1 and 2.2 to give a brief proof of a theorem of M. G. K rei n on
best approximation on the real line by entire functions of exponential type
less than a. We close this circle of ideas by showing that Kreil1'~ thcorem
easily implies the value of PI/iii given in Theorem 1.1. In Section -+ \\c give ~\

very short proof of Babenko's theorem, the "analytic" version of the i- a lard
Achieser-Krein theorem. Section 5 gives bounds for best approximation
when the class of functions is determined by a modulus of continuity condi­
tion on the nth derivative.

We make use of several standard notations. If/is a continuOLh function on
the interval I, then EmU; /) is the distance from/to the space IT". Ill' algebraic
polynomials of degree m or less in the supremum norm

inf f(x)
a(l, ...• u m

La/.;)
II I.-I tIl

If g is a continuous, periodic function on [---rr, IT], then E li /,,( g) is the distance
from g to the space Till of trigonometric polynomials of degree Iii llr less in
the supremum norm

inf g(x) I (a l. cos k.\
1

h;SinkX)I;

We make constant use of the fact that the dual space of C(/) i' 111e ,pace
of finite regular Borel measures on I and that the dual space orthe continuous
periodic functions on [ IT, rr] is the space of periodic finite regular Borel
measures f.Iv on [-rr,rr]: f.Iv( rr) f.Iv(rr). We also use the \CI'y ,wndard
duality relation: if Y is a subspace of a Banach space X and XII \. then

inf{i XII x: X (= Y: sup{/(xll ) :

where Y consists of those elements of the dual space of X which vallhh on }.

I. ApPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

Proof of Theorem I

We do the proof when 11 is even: the proof for 11 odd requires unly Illinor
modifications. Let
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For eachfE Wn* we know j<n) exists a.e. and is bounded by one and further

j(t) = r j<n)(x) Dn(t - x) dx.
-7T

Note that f:,r!(n)(x) dx = °since j<n-l)(TT) = j<n-l)( -7T). Moreover, if h is
any function in the unit ball of U" with mean-value 0, then there is a unique
function HEWn* with H(n) = h; H is just the convolution of hand Dn .

Let ,\ be any (real) periodic measure on [-7T, 7T] with total variation at
most one which is zero on Tm and letfE Wn*. Then by the duality relation
we have

(jnm ? If/(t) d,\ (t)1

= 1.[ j<n)(x) DA(x) dx I
where

DA(x) = r Dn(t - x) dlt(t).
-7T

Now let It vary over all measures orthogonal to Tm of total variation at most
one and letj<n) vary over all functions in the unit ball of Loo with mean-value
zero. Due to the duality relations we find that

(jnm = sup {distance in U from DAto the constants}.
A

Actually, this supremum is a maximum since both W n * and the unit ball of
the space of measures are compact. Now we choose a specific It; It consists of
2m + 3 point masses at the points -7T + k7Tlm + 1, k = 0, I, ... , 2m + 2
with weights 114m + 4, - 112m + 2, 112m + 2,... , - 112m + 2, 114m + 4,
respectively. For this '\,

Dix) = (m + I)-n Dn((m + 1) x)

since ,\ is orthogonal to cos kx unless k is a multiple of m + 1 in which case
the integral has the value I. Since It is orthogonat to Tm and has total variation
one we have

(jnm ? (m + 1)-n [distance of Dn((m + 1) x) to IR. in V].

Note, however, that the V distance of Dn((m + 1) x) to the constants is the
same as the distance of Dn(x) to the constants by periodicity and that this
number is four times

wj2 00i Dn(x) dx = (1/7T) L (2k + 1)-n-1 (-1)7".
o k~O
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(m f- 1)" f3nlll (4/77) L (-I)k (lk
k"-O

1)-"-1 K" '

On the other hand, let S be the best U approximation to D il from Till: then

Dn S! 1-' (m I) ilK,,:

see [10, p. 114] for the details. IfjE W n *, then

I(x) -- sex) J/11l1(t)[D,,(,\ t) -- S(x- t») df

where sex) is some element of T1II . Thus, f3n", D n -- S 1 so that

f3n1ll (m 1)/1 K w

Suppose now that F ( W
"

* and that the distance of F from T,,, is #1/1" .
Then

F(x) sex) " FIIll(r)[D Il(\' f) SU t)) ilf

where S E Till so that

f3l/liI F-- s F(xo) - s(xo)

Fill) D,,(x,,- t) - S(xo - t) 1

f3 n 1/, •

Hence, F(")(t)(Dn(xo - t)

Dn(xo - t) - S(xo t)
k77/m + 1, k -= 0, __ 1, ....

have the indicated form.

S(xo t» ° a.e. and Flill(t), I where
0. However, D n -- S changes sign at the points
11/ and only there [10, p. 118], so that F must

COROLLARY 1.2. Let I' he II POS/tfl'(1 integer and lef U. consisf of all

junctionsjin Wn*fcJr whichf(k)-= (277)1 f""I(t) e ill df °Il'hen k 1',

Then
max ·if: r
[Elf,

(I'

Proof Let H be a function in U,. which attains the maximum value of the
left-hand side. If Q is any element in T , . then the convolution of Hllil and Q
is identically zero. Hence.

H(x) = rHUiJ(t)[[)I/(x-- t) - Q(x f)] df

so that

H I distance of DI/ to T in r 1

(I' 1) I K,
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by Theorem 1.1. On the other hand, the function

4 00

G(x) = (r + I)-n - I (_1)/;(n+1) (2k + 1)-n-l cos «2k + I)(r + I) x)
1T k~O

is in Ur and II G Iloc = (r + I)-n Kn . This completes the proof.

2. ApPROXIMATIO]\; BY ALGEBRAIC POLYNOMIALS

47

Let I be the closed interval [-I, I] and let 1Tm denote the space of algebraic
polynomials of degree m or less. Let Wn consist of all functions f on I for
whichf, 1',... ,j(n-1) are absolutely continuous and I jln) I ~ 1 a.e. Let

CX n", = sup EmU).
fEWn

(2.1)

In this section we prove two theorems. The first describes a property of any
solution of (2.1); the second is a simple proof of a theorem of S. N. Bernstein
on the asymptotic behavior of CX nrn as m --+ 00.

THEOREM 2.1. Let f be a solution of (2.1). Then jln) assumes only the
values I and -1 and has exactly m ~ n + 1 sign changes in (-1, I). If
m = n - 1, then f is a constant multiple of the nth Chebyshev polynomial.

Proof The proof closely resembles the proof of the first part of
Theorem 1.1.

IffE Wn and if jlv)(-I) = °for v = 0, ... , n -- I, then

f(x) = r f(n)(1) 8(x, t) dt
·-1

where 8(x, t) = (x - t)~-1/(n - I)!; that is, 8(x, t) equals (x - t)n-l/(n - I)!
for ~ 1 ~ t ~ x and 0 for x 's: t ~ I. Further, if h is in the unit ball of
Loo(1), then H(x) == II h(t) 8(x, t) dt is in Wn .

Let A be a (real) measure on I which is orthogonal to 1Tm and has total
variation at most one; \etfE W n . Then by the duality relation

CXnm ~~ ILf(x) d'\(x)I

== ILfln)(f) FA(1) dt I
where

FA(t) = L 8(x, t) d'\(x).
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As 1\ runs over the measures of total variation at most one which are ortho­

gonal to 7T", and as/runs over It"" we find that

\
ilu!

The supremum is actually a maximum and equality holds in (.2.2) luI' a

measure A with m 2 points in its support. To see this let H be a function ill
W" whose distance to 7T", is\,,,,, . Such a function exists since If'" is compact.
Let P E 7T ii , be the polynomial of degree m which is closest to II. Then there

are points I 'Yo XI' '. ,Y", \ I at which H(xI.·) PC\'·.)

(--I)k, k 0, ... , mil. Let /\ be a measure supported on : k 0....
m -, I: of total mass one which is orthogonal to "",: let Ak be the weight of
A at XI. ' k - 0.... , m - - I: it is easy to see that ( 1)1 '\i 0 and hence
L:~/c-l ( IY '\1 I. Then

(Ii I

\//Iil I (H(xl)

( (H
'/

" Hi/)f:) iI\'
'I

F~\ 1 \'i/ll .

PC\;))

,I H iI,\

Hence, equality holds in (2.2). We have also shown that if H W" is at
distance ('("iii from 7T lii then there is a measure ,\, depending on H. with 111

points in its support which is orthogonal to "'" and which satisfies

'"", r H''')F"
'1

Hence, Hil/1F,) 0 a.e. and HI,,) I where F

(m-- n I)st derivative of the function
O. However. r, I', the

Six) r (x
• f

which is a B-spline and so F,\ has precisely III n zeros in ( I, I): see
[4, p. 74]. In particular, in the case III // I, the smallest value of III for
which ex"", is finite, we find that F,) 0 on ( I. I) and so H is a polynomial
of degree II: clearly, H must be the nth Chebyshev polynomial suitahly
normalized and

't/ I . ii __ ! .2" 1///!

For emphasis we restate the primary cunclusiun or Theorem 21 rocli
solution 0/(2.1) is a pcr/(:'ct splillc I\'ith exactl\' III Ii kllots Oil ( ! II
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Comments. (I) It would be most interesting to prove that there is only
one solution of (2.1) and to locate its knots. Of course, the solution in the
trigonometric case (Theorem 1.1) is also a perfect spline; its knots are
regularly spaced at intervals of 7T/m --I- I. There is a temptation to try the
substitution x = cos e to turn the algebraic problem into a trigonometric
problem. Of course this will not work since the condition: r nl : I is not
carried into anything useful.

(2) The formula
.1

''Xnm=C max max I f ciA
fGW n ,\ "'-1

where A is the sum of m + 2 point masses shows that (x",,, is the maximum of
the m .. j. Ist divided difference of/at points -I Xo < XI < ... < XIII I I
where/is restricted only by the condition that Ir") I ~ I on [·-1, I].

(3) In the trigonometric case there is a constant C such that (3nll<
(m+- 1)" ~ C for all choices of m and n. (In fact, C = 7T/2 will work). There
is no such number for the algebraic case since (X1I.n-1 = 2- IIII(n !)-1, and
hence (Xn.n_In n ~ CD as n ~ oc:. However, for n fixed cxnmm" does remain
bounded as Theorem 2.2 shows.

We now use Theorem 1.1 and some other facts to give a proof of the
following theorem of Bernstein [2], proved in 1947; see [II, p. 293] for a proof
in the English language.

THEOREM 2.2. limitlll~'" m"cx nr" = K n where K" is the constant gh'en by (0.2).

Proof For the first part of the proof it is technically somewhat easier to
work on [-'7T, 7T]. Let ''X"m be the number analogous to CX nlll for the interval
[-7T, 7T]; then G:Wf! = 7T"':X,n" . We shall show that

lim sup mn('Xnm .?: 7TnK n .
In·,>u:

Let h lie in the unit ball of L",( -7T, 7T); then H(x) ~= f Dn(x - t) h(t) dt is in
Wn(-7T, 7T) and differs from the usual nth indefinite integral of h by an
algebraic polynomial of degree 11 - I. Hence, as in the proof of Theorem 1.1
or Theorem 2.1

where the supremum is taken over all measures A on [-7T, 7T] which are
orthogonal to 7Tm and which have total variation at most one.

Let EO be a small positive number and let r be the greatest integer in
m/(I -+- EO) 7T. We shall need the following standard fact, which dates back at
least to Bernstein in 1912 (See [10, p. 77]).
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LEMMA 2.3. Let R I and let ER be the ellipse x (7T/2)( R R I) cos (I.

)' ~ (7T/2)(R -- R .1) sin e. 0 e 27T. Suppose f is hololllorphic on und
]l'ithin ER and bounded by M on L 11 • Then

Continuing the proof of Theorem 2.2 we take f(:::) e' /,.: in
The maximum of f(;:;)1 on ER is at most exp[(kj2)( R R
o k r, this in turn is no more than exp[m( R R 1 )/2( I
R so close to I that

(2.3)

Lemma 2.3.
1)7T]. When
E)]. Chuose

where p

exp[(R R 1)/2 (I

I. Then we have the estimate

E",(e,I,: 7T,7T) 2(R

E)] pR

I) I p" (2.4)

for 0 k r.
Now let h be any continuous, 27T-periodic function on [ Jr. ,,] which i~

bounded by I. Let 1\ be a measure on [ 7T, 7T] which is orthogonal to "'" and
has total variation I or less. Then

r h(r) D,(t) dr IH(\) d,\ (\,)

I. 0

wherch(k) (lj27T)!"rrh(t)c dtand/\(k) r",.e iI'dA(x).Set

H,(Y) I k "i/(k) AU\) eil."

Then

f h( 1) D,,(r) tit H,(O) (2.5)
I

I. /0

The estimate (2.4) shows that A(k) . 2(R
second sum in (2.5) is no larger than 4m(R
derivative of H, (recall If is even) differs from

1)-1 pU' if k r and thus the
1)1 pi". Furthermore. the 11th

by the term

I iz(k) AU~) e'l' f_ h(Y 1) d'\ (1) (2.6)

(2.71
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We know that (2.7) does not exceed 4m(R - 1)~1 pm and (2.6) is clearly
bounded by I. (We extend h to be 27T-periodic on IR.) Hence, Corollary 1.2
implies that

This implies that

If, h(t) DA(t) dt I
:S;; (r --L I)-n Kn(l -+- 4m(R - 1)-1 pm) -+- 4m(R - 1)-1 pm

:S;; 7Tn(l + E)n m-nKn -+- 4m(R - 1)-1 pm(l -+- (r -+- I)-n K n).

Hence, amlt = SUPI/'[oo<l lr" h(t) DA(t) dt I is also bounded by the same
quantity so that

and this yields lim SUPm_Hf) (mnanm) :S;; 7Tn(l -+- E)n Kn . Since 10 is arbitrary,
we have established

To prove that lim infm~<f) (mncxnm) ?: Kn we return to the interval 1=
[-I, I] and use a few elementary facts about entire functions of exponential
type.

Let 10 > °be given. Let m be a positive integer and define

Fm(x) = (4f7T) I (-I)" (2k -+- 1)-n-1 cos«(2k -+- 1)(1 -+- E) mx),
o

-oo<x<oo

and set F(x) = F1(x). Suppose for each m in a sequence of m --+ 00 there is a
polynomial Pm of degree m with

0> 0,

where 0 is independent of m. Then a change of variables yields

where qm(x) = Pm(xfm), - 00 < x < 00. Now

k "'= O, .. o,m
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and by ,1 classical inequality of Markov 13. 46, (X31].

2/\, i,'!

Hencl'.
11,

Thi~ Implies that <1 subsequence or ;if,.,; con\crge, unli"ol"\lll:" i.<1mi':ll'[

subset, of the plane to an entire functic!l1 (, o!' nl'oncnti;\i lyp.: : ':': I,>",
Clearly. G satisfies the inequalii'.,

F (;, ( I

However. ~ince r is periodic with period 2".( i ,) i \\e 111<1\ :h,Ui!it: (i iL,',

this period and hence G is constant. But no con,lanl is \" ithll1 dis!:mcc' I"
of r This contradiction shows that

Inn Inl F",(/, ,I J A
III f

I-Io\',e\er. (I

lim inf (J/I" '"",,)
1/1 ,f

A.,,( I t i

and the theorem is proved.

3. ApPROXIMATION 0'-1 HI LINI BY [i\ i IRI FU,\CTIO'-S

01 Expo\:rNII,\1 Ty 1'1

Let 1:. .• a O. be the space of enlirc function, 01 exponential type (til

than (J which are bounded on the real axis, Such i"unctionfnecessarily '<ltj~tie~

the growth condition

!Cy II ) 1'" 'i( SLIp
I

f(r) )

for sOllle p iT. In this section we use Theorems I.! and 2.210 give a ~lInple

proof of the following theorem of Krein [9].

THIORHvl 3.1. Let V" CO/lSiSf of all bOll/lded lilllclioll\ r 0/1 \ .J: I

which salisfl' (1"1 I 0/1 ( X. x), Lei

sup inf
(,:. J-' (,',-:r

(, (

l/ic/I ;" IJ A" where A" II Ihc cO/lslall1 gl/I'/I 1'7 \0.2),
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Proof Again we take n to be even. Let

53

F (x) = ~~ ;. (-l)k cos(2k + 1) ux
a un 17 If::O (2k + l)n+l '

-oo<x<oo,

Then Fa E Vn ; suppose G E Ea and II G - Fa II ~ Kn(l - 0) u-n, 0 > O. Let
F(x) = unFa(xju) and H(z) = unG(zju). Then II F - H II<-"J,oo) ~ (1 - 0) Kn
and H is entire of exponential type less than 1. Since F is 217-periodic, we may
assume H is also and hence H is constant. But the distance from F to the
constants is Kn . Thus, the distance from Fa to Ea is Knu-n so that '}Ina?
V'. -ti
J\nU •

On the other and, letfE Vn , E > 0, and let 1m be the interval 1m = [-mju
(1 - E), mju(I - E)]. Let Pm be the best approximation tofon 1m from 17m ,
let g",(x) = f(mxju(I - E» and qm(x) = Pm(mxju(l - E». Then

so that by Theorem 2.2

Hence, II qm II ~ C for all m so that

i P~')(O)I =, uk(l - Ey nck I q:;l(O)[

~; Cuk(I - EY'

by Markov's inequality. Hence, some subsequence of {Pm} converges uni­
formly on compact subsets of the plane to an entire function G of exponential
type less than u which must satisfy

Hence,

inf I'f'- G
GEE

a
,I

for each f E Vn and each E > 0, so that

~ Kn /u"(1 - E)"

'}Ina ~ Kn/un

and this completes the proof.
To complete the circle of ideas in Theorems 1.1,2.2, and 3.1 we show that

Theorem 3.1 easily implies the value of the constant f3nm in Theorem 1,1, Let
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fE Wn * and extend f periodically to the line. Then, because a 211-periodic
function in E"'+l is a trigonometric polynomial of degree m or less, we have

inf 1- G c- inf, / -- T, .
GEE

m
I . ( ) ,f) TET

m
I'. L ( ",I:)

But the left-hand side does not exceed Kn(m I)" by Theorem 3. I. Hence,
f3nm ~ Kim -I- I )-11. On the other hand, the function

4 \-1)-11 - L.. (cos(2/\ : l)(m
11 0

I)x)( l)kU,I)/(2k I)" 1

lies in W" * and has 2m-; 3 alternation on [- 1T. 1T] and hence the best
approximation to F", from T", is zero; thus

! F",(O)] = KII/(m I)".

4. AN ANALYTIC VERSION OF THE FAVARD--AcHIESER-KREIN THEOREM

If we view Theorem 1.1 on the unit circle, then it says that a continuous
function whose nth derivative is never larger than 1 can be approximated by a
sum of the form

'"
s(x) I c

with an error of no more that Kn(m -i It". The "analytic" version of this
theorem would be to approximate a function whose negative Fourier coeffi­
cients are zero by a sum of the form

fi(X) I c/"eik
,1' :

o

that is, approximate an analytic function on the unit circle by a polynomial
of degree m in the complex variable z. This is the content of the theorem or
Babenko [10, p. 126] which is somewhat more general.

THEOREM 4. J. LE't R [and lE't An(R) consist of all analytic functions f
on z! < R which satisfy I fljI)(z) J for z! < R. Thcnfor m -;: n I.

IU RIII'-II' I)

)! ' (4.1)

Iff is a solution of (4.1) thenl(z) C::'" II + p(z) for WI appropriate constl1m
C and polynomial p of dcgrec /I I.
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Proof Assume R > I; the case R = I follows by taking limits. Let
IE AiR); then

fez) = I ajz j

o

so that

pnl(Z) = I {(j + n)!/)!} aHnzj,
o

I zl < R.

Let Ck = k!/(k + n)!, k = 0, I, ... , and set

G(B) = Rn-m-leilm+l,01Cm_n+l + 2 I~l R-kCm_n+l+k cos kB!.

Then it is straightforward to check that

where Pt is a polynomial of degree m which depends onf Hence

inf ill - q I! cs: iii+ PI II
qE1Tm

cs: l!pn'(Rei8)11", II Gill'

However, the term in the brackets in the formula for G is nonnegative since
{Ck} is nonnegative with nonnegative first and second differences. Hence,
SUP/EA (R) infqE1T III - q II cs: Rn--m-1cm_n+1 .

On the other hand, the function F(z) = Rn-m-1cm_n+lzm+1lies in An(R) and
is at distance Rn-m+lcm_n+l from 7Tm . This proves the first part of the theorem.

IfIE An(R) has maximum distance d = Rn-m-1cm_n+l from 7Tm , then

d cs: II!+ PI II", = I f(e itO
) + Pt(e itO

) I

= 1-2~ (1T pnl(Rei8) ein8G(to - B) dB I
cs: 2~ (1T I flnl(ReiO) einOG(to - B)I dB

cs: I! flnl(Rei8)11", II G(to - B)111

cs: d.

Hence, f<n'(Rei8) einOG(to - B) has constant argument and Ip nl(Rei8)1 = I
where G(to - B) =1= 0. Since G cannot vanish on a set of positive measure, we
find that

pnl(ReiO) = Aeilm-n+110

where I ,.\ I = I. Hence, fez) = ,\Rn-m-lCm_n+1Zm+l + p(z) where P E 7Tn-l .
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5. OTHER MODULI OF CONTINUITY

Theorem 1.1 may be viewed as establishing the distance from T". 10 the set
of those functions f for which P,,-II satisfies the Lipschitz condition
fill-l)(x) f'" IICr) , .\" y for all x, l' in r 77,77]. With that in mind

we can ask for the distance from F,u to the set of functions f for which 1)

has some other modulus or continuity. We look at this question when the
modulus of continuity w is concal'c: we do not get the precise distance (for
this sec [8. Section 5]) hut do establish LIpper and lower bounds which are
not too far apart. The techniq ues arc elementary but we do make use of a
theorem of Korneicuk on the precise value of the constant for the lowest­
order case. For simplicity in exposition we impose the modulus of continuity
condition on the 11th derivative.

DUINIIIOr-;. Let w(h) be ~l continuous, concave positive. Il1Cfeaslng
function on [0,277J with w(O) 0 and w(17] 172 ) w(h)) itJ(/iJ. \\e

define L1"" to be all those functions f for which I r ..... P,,) arc conti nUOLlS
27T-periodie functions on [ TT, TT] and for which /II')(X h) P")(x)

w(h)~ x [ iT,7Tl 0 h 277.

THEOREM 5.1. Let w be ({ concal'e IJ/odulus olcol1tinuitJ' ({l1(lleI ,!J,,,,,(W)

sup{EI/i *(f):fE cll~uJ Thcn

I) II ~w( 7T!1J/ 1) K,,(IJ/ I)

(5. I)

where K" , K" 1 ({re Ihc conSlal1ts gil'cl1 by (0.2)for nand n

Proof The theorem of Korneicuk [6] asserts

I. rcsficctil'eh.

sup; r;,,,'(/) : I /1 ... : I) I).':)

Also see [9, p. 123]. First we establish the upper bound in (5.1). Let .'-i be the
best U approximation to D II from Tin, let ,\ be any periodic measure which is
orthogonal to T,,, and has total variation I or less. let C Ll~ul with C'" i g.

For an appropriate choice of ,\ and C we have

f-Jr",,(w) sup( E I ,,'( f): f 'cC il'

J"C(t) d(\ (t)

J"() _g(r- x)(D,Jx) ,"ll\») IIv) d,\ (r)

'" II ~(! \) 11,\ (t))( D u (\) S(\) I iI\
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U(x) = 1'17 g(t ~ x) dA (t)
"'---/7
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°~ x ~ rr/2(m + I),

rr/2(m + 1) ~ x ~ rr/m + 1,

is no larger than }w(TT/m + I) by (5.2). Hence, applying Holder's inequality
we find that

f3mn(W) ~~w(TT/m -+- I) Kr,(m + 1)11

since 1D,,- S1,1 == Kn(m + I)--n. This gives the upper bound.
To establish the lower bound we choose a particular g and a particular A.

First assume n is even. Let g be the even function of period 2rr/m + I for
which

g(x) = lw(rr/m + I - 2x)

= - ~w(2x - rr/m + 1)

g is in /l;iu,; see [10, p. 45]. Let Abe the measure with 2m + 3 point masses at
the points -rr + krr/m + 1, k = 0, 1, ... , 2m + 2, with weights 114m + 4,
~-1!2m + 2, 112m + 2, ... , -112m + 2, 114m + 4, respectively. Then Ais ortho­
gonal to sin kx for all k and to cos kx if k is not a multiple of m + 1; the
integral of A against cos p(m + l)x is 1 for all integers p. Since g is 2rr/m --+- 1
periodic and even,

r get - x) dA (t) = g(x).
~-7{

Hence, if G(tI) = g, then G EO A~w and

f3nm(W) >r G(t) dA (t)
-17

= r g(x) Dn(x) dx
-17

= (m + 1)-17 r g(x) Dn«m -;- 1) x) dx
--TT

since g is 2rr/m + 1 periodic. Continuing

f3nm(W) (m + 1)-n r g(x/m ---t- I) Dn(x) dx
-1C

,~= 2(m + 1)-17 rg(x/m + 1) Dn(x) d.-I;,
o

Now

(17 g(x/m + I) Dn(x) dx
·0 17 /2

= f g(x/m + I)[Dn(x) - Dn(rr - x)] dx
o

= (2/rr) C/2 g(x/m + 1)(£ (2k + 1)-n cos(2k + I) x) dx.
. 0 0
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Since the sum in the last integral is nonnegative on [0,17/2] we may use the
inequality which is valid for 0 x 17/2 because of the concavity of iJ)

2g(x/llli I) .•~ W(17/IIl: I .- 2x/l11: I)

= w«17/m 1)(1 2X/17»

(I - 2X/17) W(17/m I).

Hence,

I
.~- w(17/m
17 '

I
- ..- W( 17!III

17 ' I) K" l'

I ) ,,·2

2X/17) cos(21< I) .\ d\

A similar computation gives the same lower bound when n is odd.

COROLLARY 5.2. Let w(h) ~. It" 0 <y I. Theil

I) ,

I the corollary yields the estimates

Comments. (I)

equality.

(2) For 11

When y I the left inequality above j, actually an

~171 '(Ill :- I)' 1 ,

and for n c=. 2 the estimates

I)

These compare with the exact values

l(I 1)1

and

~(2 I)

found by Korneicuk; [5,6], respectively.
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